
546 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 5, MAY 1998

Efficient Circuit Simulation of Nonuniform
Transmission Lines

Dmitri Kuznetsov

Abstract—This paper extends the transmission-line simulation method
of [1] to nonuniform lines. The method is applicable to multiconductor
lossy frequency-dependent transmission lines characterized by sampled
frequency-domain responses. The resulting model can be directly incor-
porated into a circuit simulator. The implementation includes ac, dc, and
transient analyses. The method is reliable, accurate, and as efficient as the
simple replacement of interconnects by lumped resistors. The method is
based on approximation, and its accuracy and efficiency result from the
simplicity of characteristic responses. To apply the method to nonuniform
lines, two novel nonuniform line models are introduced. An open-loop
model completely separates forward and backward waves and results in
the simplest aperiodic responses, but does not guarantee their stability.
An open-loop distributed-reflection model explicitly includes the internal
distributed reflections, and provides the simplest stable characterization.
It is shown that for nonuniform lines, the generalized method of char-
acteristics no longer separates forward and backward waves. Numerical
example of a parabolically tapered frequency-dependent four-conductor
line is given.

Index Terms—Circuit simulation, interconnect simulation, nonuniform
transmission lines, signal-integrity analysis, transient analysis, transmis-
sion lines.

I. INTRODUCTION

As the speed of digital circuits increases, the transmission-line
behavior of interconnects starts to significantly affect the signal
integrity, and their accurate modeling becomes an essential part of
the design process. A substantial amount of study has been devoted
to the transient simulation of nonuniform transmission lines in recent
years [2]–[12]. This paper extends the transmission-line simulation
method of [1] to nonuniform lines.

The method can be directly incorporated into a circuit simulator,
and supports ac, dc, and transient analyses. For ac and dc analyses,
the method uses theY -parameter element characteristic1

iii1(!) = YYY 11(!)vvv1(!) + YYY 12(!)vvv2(!)
iii2(!) = YYY 21(!)vvv1(!) + YYY 22(!)vvv2(!):

(1)

For the transient analysis, the method starts with the following
frequency-domain element characteristic:

iii1(!) = YYY 1(!)vvv1(!)� jjj
1
(!)

iii2(!) = YYY 2(!)vvv2(!)� jjj
2
(!):

(2)

Then, the matrix admittancesYYY 1 andYYY 2 and vector current sources
jjj
1

andjjj
2

are expressed in terms of transmission-line transfer func-
tions by applying the continuity conditions for the voltages and
currents at the line terminals.

To obtain the discrete time-domain element characteristic (needed
by the circuit simulator to perform the transient analysis), the
transmission-line functions are approximated by rational polynomial
functions and then transformed into the discrete time domain
using numerical integration. To lower the approximation order and
improve the accuracy, the method characterizes transmission lines
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by open-loop transfer functions, which eliminate reflections from
the terminations and provide the simplest stable characterization.
As shown in [1], for uniform lines, open-loop characterization is
equivalent to the generalized method of characteristics.

The method uses novel rational approximation, indirect numerical
integration, and matrix-delay separation techniques. Because the
method is based on frequency-domain approximation, it is directly ap-
plicable to lines with frequency dependence and lines characterized by
measured frequency-domain responses. Since the method introduces
neither additional nodes nor current variables, it does not increase the
time required for the solution of the circuit equations. As a result, the
method has been adopted in several industrial and commercial circuit
simulators and, in numerous real-life simulation exercises, proven to
be computationally robust. Extensive efficiency and accuracy data,
and detailed discussion of alternative transmission-line simulation
methods can be found in [1].

The method handles both uniform and nonuniform lines in the same
manner. Because of the lack of space, this paper will not repeat the
results for uniform lines, but will focus on the differences specific for
nonuniform lines. The differences are in the expressions for theY -
parameters in the ac/dc element characteristic (1), and forYYY 1 andYYY 2,
andjjj

1
andjjj

2
in the transient element characteristic (2). Because the

method is based on approximation, its accuracy and efficiency depend
on complexity of characteristic responses. This paper presents two
models that separate forward and backward waves and provide the
simplest characterization for nonuniform lines.

This paper shows that the open-loop model does not guarantee sta-
bility of characteristic responses for nonuniform lines, and introduces
an open-loop distributed-reflection model which produces the sim-
plest stable characterization. Numerical example demonstrates that
both models are in excellent agreement with the analytical solution
for multiconductor frequency-dependent parabolically tapered lines
of [2].

II. NONUNIFORM LINE MODELS

A. Open-Loop Model

Nonuniform lines can still be represented by the same system
model as uniform lines (see Fig. 1).2 For nonuniform lines, the
propagation functions in the forward and backward directions are no
longer the same, and the characteristic admittances become dependent
on the position along the line as well as on the direction of wave
propagation.

The expressions forYYY 1 and YYY 2, and jjj
1

and jjj
2

in the transient
element characteristic (2) are derived directly from the continuity
conditions for the voltages and currents at the line terminalsvvv1 =
vvvf1+vvvb1, iii1 = iiif1� iiib1, and the definitions of the characteristic ad-
mittances and propagation functionsiiif (x; !) = YYY f (x; !)vvvf (x; !),
iiif2(!) = WWW If(!)iiif1(!).3 Because of the form of the element
characteristic (2), it is advantageous to use functions for current
waves. To open the feedback loop formed by the reflections from
the terminations, the current sourcejjj

1
must depend only on the

backward wave, andjjj
2

only on the forward wave. This condition

2Subscripts “f ” and “b” stand for forward and backward waves, “1” and
“2” for the near- and far-end terminals, and “V ” and “I” for voltage and
current functions, respectively.

3The corresponding expressions for the backward waves and far-end
terminals can be obtained by replacing the subscripts “f ” $ “b” and “1”
$ “2”.
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Fig. 1. System diagram representation of a transmission line with termina-
tions.WWWV f andWWWV b represent the forward and backward matrix propagation
functions for voltage waves.TTTV 1, TTTV 2, and�V 1, �V 2 stand for the near-
and far-end matrix transmission and reflection coefficients.

uniquely definesYYY 1, YYY 2, andjjj
1
, jjj

2
as follows:

YYY 1(!) = YYY f1(!)
YYY 2(!) = YYY b2(!)

(3)

jjj
1
(!) = XXX1(!)iiib1(!)

jjj
2
(!) = XXX2(!)iiif2(!)

(4)

iiib1(!) =WWW Ib(!)iiib2(!)
iiif2(!) =WWW If(!)iiif1(!)

iiib2(!) = iii2(!) + iiif2(!)
iiif1(!) = iii1(!) + iiib1(!)

whereXXX1(!) = III+YYY f1(!)ZZZb1(!),XXX2(!) = III+YYY b2(!)ZZZf2(!),
andYYY f1, YYY b2, andZZZf2,ZZZb1 are forward and backward characteristic
admittances and impedances at the near- and far-end terminals. The
propagation functions for current wavesWWW If andWWW Ib, are related
to the propagation functions for voltage waves,WWW V f and WWWV b,
as follows:WWW If(!) = YYY f2(!)WWWV f(!)ZZZf1(!) and WWW Ib(!) =
YYY b1(!)WWWV b(!)ZZZb2(!). As can be seen, for nonuniform lines, the
open-loop device model is no longer given by the generalized method
of characteristics. However, (3) and (4) cover the generalized method
of characteristics [2]–[4] as a special case, in whichYYY f1 = YYY f2 =
YYY b1 = YYY b2 = YYY c, WWW If = WWW Ib, andXXX1 = XXX2 = 2III.

By resolving (1)–(4),Y -parameters in the ac/dc element charac-
teristic (1) can be expressed in terms of the open-loop functions
(propagation functions and characteristic admittances) as follows:

YYY 11(!) = [III+XXX1(!)PPP
�1

1 (!)WWW Ib(!)(XXX2(!)�III)WWW If(!)]YYY f1(!)

YYY 12(!) = �XXX1(!)PPP
�1

1 (!)WWW Ib(!)YYY b2(!)

YYY 21(!) = �XXX2(!)PPP
�1

2 (!)WWW If(!)YYY f1(!)

YYY 22(!) = [III+XXX2(!)PPP
�1

2 (!)WWW If(!)(XXX1(!)� III)WWW Ib(!)]YYY b2(!)

(5)

where

PPP 1(!) = III �WWW Ib(!)[XXX2(!)� III]WWW If(!)[XXX1(!)� III]

and

PPP 2(!) = III �WWW If(!)[XXX1(!)� III]WWW Ib(!)[XXX2(!)� III]:

The open-loop propagation functions and characteristic admittances
for nonuniform lines can be obtained from the general solution
of telegrapher’s equations by asymptotically separating the terms
corresponding to the forward and backward directions of propagation.
Table I presents these expressions for parabolically tapered lines.

Fig. 2. The internal-reflection system model for nonuniform lines.

Parabolically tapered lines have the simplest analytical solutions, and
are convenient to use for testing of nonuniform line models.

As long as a nonuniform line does not have abrupt discontinuities,
the open-loop responses are simple aperiodic functions of frequency
and time (as they are for uniform lines [1]), and can be accurately
represented by a few samples and simulated using a low-order
difference approximation with only real poles.

In contrast to uniform lines, the open-loop functions for nonuni-
form lines, while providing the simplest possible characterization,
do not represent distinct physical phenomena which would have
to satisfy the energy conservation law. As a result, they can be
nonminimum-phase functions4 with unstable time-domain responses.
The reason for this is that in nonuniform lines, the forward and
backward waves are coupled via the internal distributed reflections,
which are not explicitly included in the open-loop model.

For instance, for parabolically tapered lines, the far-end backward
characteristic admittanceYYY b2 is a nonminimum-phase function (see
Table I). Nonminimum-phase functions have to be approximated
using positive poles which can lead to unacceptably large transient
simulation errors. However, for parabolically tapered lines,YYY b2 is
the only nonminimum-phase function in the open-loop element char-
acteristic, and a completely stable characterization can be obtained
by premultiplying both sides of the second equation in (2) withYYY

�1

b2 .

B. Open-Loop Internal-Reflection Model

For a nonuniform-line characterization to be stable in a general
case, the line model has to explicitly include the internal distributed
reflections. The system-diagram representation of a nonuniform trans-
mission line (taking into account the internal reflections) is shown in
Fig. 2.

The near- and far-end internal-reflection coefficientsRRRV 1 andRRRV 2

combine the total effect of the internal distributed reflections produced
by the forward wave on its way from the near- to far-end terminal,
and by the backward wave on its way from the far- to near-end
terminal, respectively.

The internal-reflection propagation functions~WWWV f and ~WWW V b, and
reflection coefficientsRRRV 1 andRRRV 2 are identical to the scattering
parameters with the matched (at both ends) reference system (as
are the propagation functions for uniform lines) and can be directly
measured as follows:~WWW V f = SSS21, ~WWWV b = SSS12, RRRV 1 = SSS11,
andRRRV 2 = SSS22. Table II presents analytical formulas relating the
open-loop internal-reflection functions to the open-loop functions.

Because of their distinct physical meaning, the open-loop internal-
reflection functions have to satisfy the energy conservation law, and
are guaranteed to be stable. The internal-reflection system model in
Fig. 2 covers the model in Fig. 1 as a special case in which no internal
reflections are present, i.e.,RRRV 1 = RRRV 2 = 0. By taking into account
internal distributed reflections and eliminating reflections from the
terminations, the open-loop internal-reflection functions provide the
simplest possible stable characterization for nonuniform lines.

From the internal-reflection system model, we can derive, in
the manner similar to the derivation of (3) and (4), the following

4Nonminimum-phase functions are transfer functions whose poles are not
confined to the left half of the complex plane.



548 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 5, MAY 1998

TABLE I
OPEN-LOOP TRANSFER FUNCTIONS FORPARABOLICALLY TAPERED LINES: ZZZ(x; !) = (1 + ax)2ZZZ(!), YYY (x; !) = (1 + ax)�2YYY (!)

expressions forYYY 1 andYYY 2, andjjj
1

and jjj
2

in the transient element
characteristic (2):

YYY 1(!) = [XXX1(!)� III]YYY c1(!)
YYY 2(!) = [XXX2(!)� III]YYY c2(!)

(6)

jjj
1
(!) = XXX1(!)iiib1(!)

jjj
2
(!) = XXX2(!)iiif2(!)

(7)

iiib1(!) = ~WWW Ib(!)iiib2(!)
iiif2(!) = ~WWW If(!)iiif1(!)

iiib2(!) = [III �RRRI2(!)]
�1[iii2(!) + iiif2(!)]

iiif1(!) = [III �RRRI1(!)]
�1[iii1(!) + iiib1(!)]

whereXXX1(!) = III + [III � RRRI1(!)][III + RRRI1(!)]
�1 andXXX2(!) =

III + [III � RRRI2(!)][III + RRRI2(!)]
�1. The near- and far-end charac-

teristic admittancesYYY c1 and YYY c2 are equal to the characteristic
admittances of uniform lines with the same values of distributed
parameters as those of the nonuniform line at the ends, and do not
depend on the direction of propagation. The propagation functions
and internal reflection coefficients for current waves~WWW If , ~WWW Ib,
RRRI1, andRRRI2 are related to the propagation functions and internal
reflection coefficients for voltage waves~WWWV f , ~WWW V b, RRRV 1, and
RRRV 2 as follows: ~WWW If(!) = YYY c2(!) ~WWWV f (!)ZZZc1(!), ~WWW Ib(!) =
YYY c1(!) ~WWWV b(!)ZZZc2(!), RRRI1(!) = YYY c1(!)RRRV 1(!)ZZZc1(!), and
RRRI2(!) = YYY c2(!)RRRV 2(!)ZZZc2(!). Equations (6) and (7) cover the
generalized method of characteristics as a special case in which
YYY c1 = YYY c2 = YYY c, WWW If = WWW Ib, RRRV 1 = RRRV 2 = 0, and
XXX1 = XXX2 = 2III.

For practical application, its is advantageous to combine (6) and
(7) and to express them in terms of the terminal voltages instead of

the currents

jjj
1
(!) = HHHIb(!)[XXX2(!)YYY c2(!)vvv2(!)� jjj

2
(!)]

jjj
2
(!) = HHHIf(!)[XXX1(!)YYY c1(!)vvv1(!)� jjj

1
(!)]

where

HHHIb(!) =XXX1(!) ~WWW Ib(!)[III +RRRI2(!)]
�1
XXX
�1

2 (!)

and

HHHIf(!) =XXX2(!) ~WWW If(!)[III +RRRI1(!)]
�1
XXX
�1

1 (!):

This way, the terminal currents do not have to be recovered.
The transfer functionsHHHIf andHHHIb contain delays which originate

from the propagation functions~WWW If and ~WWW Ib. Before the difference
approximation is applied, the delays are separated via the matrix delay
separation technique, which represents the matrix transfer functions
in the following form:

HHHIf(!) = ĤHHIf(!)MMMIfeee
�j!TTT

MMM
�1

If

HHHIb(!) = ĤHHIb(!)MMM Ibeee
�j!TTT

MMM
�1

Ib

where the delayless transfer functionsĤHHIf andĤHHIb are found as

ĤHHIf(!) =HHHIf(!)eee
j!TTT

ĤHHIb(!) =HHHIb(!)eee
j!TTT

:

The matrix propagation delaysTTT If and TTT Ib are the same in the
forward and backward directions:TTT If = TTT Ib = TTT I , and are equal
for all of WWW If , WWW Ib, ~WWW If , ~WWW Ib, HHHIf , andHHHIb. TTT Ifm andTTT IBm,
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TABLE II
EXPRESSIONS FOR THEOPEN-LOOP INTERNAL-REFLECTION FUNCTIONS IN TERMS OF THE OPEN-LOOP FUNCTIONS

andMMM If andMMM Ib are diagonal eigenvalue and constant eigenvector
matrices ofTTT If andTTT Ib, respectively.

The Y -parameters in the ac/dc model (1) are expressed in terms
of the internal-reflection functions as follows:

YYY 11(!) = fXXX1(!)[III+PPP
�1

1 (!) ~WWW Ib(!)

� (III+RRRI2(!)) ~WWW If(!)]� IIIgYYY c1(!)

YYY 12(!) = �XXX1(!)PPP
�1

1 (!) ~WWW Ib(!)YYY c2(!)

YYY 21(!) = �XXX2(!)PPP
�1

2 (!) ~WWW If(!)YYY c1(!)

YYY 22(!) = fXXX2(!)[III+PPP
�1

2 (!) ~WWW If(!)

� (III+RRRI1(!)) ~WWW Ib(!)]�IIIgYYY c2(!)

where

PPP 1(!) = III � ~WWW Ib(!)[III +RRRI2(!)] ~WWW If(!)[III +RRRI1(!)])

and

PPP 2(!) = III � ~WWW If(!)[III +RRRI1(!)] ~WWW Ib(!)[III +RRRI2(!)]:

Because they include the distributed feedback due to the internal
reflections, the open-loop internal-reflection functions are more com-

plicated than the open-loop functions. Consequently, they require a
higher order approximation and have to be approximated using both
real and complex poles. However, because the reflections from the
terminations are eliminated, the open-loop internal-reflection transfer
functions do not contain nondecaying oscillations (provided that the
nonuniform line does not contain abrupt discontinuities inside), and
still can be approximated in the full range from zero to infinity.

Distributed-reflection functions typically require 15–30-order ap-
proximation for the full frequency/time range (in contrast to the
3–10-order approximation for the open-loop functions). However, the
open-loop internal-reflection characterization is still simpler than any
other stable characterization (such asS-, Y -, Z-, or H-parameters)
because it is the only characterization that opens the feedback loop
formed by reflections from the terminations.

III. N UMERICAL RESULTS

The accuracy and reliability of the method have been tested in
numerous simulation exercises. Fig. 3 shows transient waveforms for
the four-conductor parabolically tapered frequency-dependent line of
[2] simulated with the open-loop and open-loop internal-reflection
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Fig. 3. Transient waveforms at conductor 3 of the four-conductor fre-
quency-dependent parabolically tapered line of [2]. Thin continuous curves
show the results obtained with the open-loop model and thick dashed curves
show those for the open-loop internal-reflection model.

models installed in a modified nodal approach (MNA)-based circuit
simulator. The results are in excellent agreement with the analytical
solutions in [2, p. 12, Fig. 4(a) and (b)]. Seventh-order real-pole
approximation was used for the open-loop model, and a 17th-order
complex-pole approximation was used for the open-loop internal-
reflection model.

The run-time comparisons for circuits of various sizes and types
can be found in [1]. The run-time data in [1] were obtained with the
open-loop nonuniform line model.

IV. CONCLUSIONS

This paper presented the application of the transmission-line sim-
ulation method [1] to nonuniform lines. Two novel nonuniform line
models were introduced.

The open-loop model results in the simplest aperiodic responses
(similar to those for uniform lines), which can be accurately repre-
sented by a few samples and a low-order approximation with only
real poles. The model, however, does not guarantee stability of the
line characterization.

The open-loop internal-reflection model provides the simplest
stable characterization, which is, however, more complex than the
open-loop characterization and requires a higher order approximation
with complex poles.
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Micromachined Thermocouple Microwave Detector
by Commercial CMOS Fabrication

Veljko Milanović, Michael Gaitan, and Mona E. Zaghloul

Abstract— This paper reports on the design and testing of a
thermocouple microwave detector fabricated through a commercial
CMOS foundry with an additional maskless etching procedure. The
detector measures true rms power of signals in the frequency range from
50 MHz to 20 GHz, and input power range from�30 to+10 dBm. The
device has linearity better than�0.4% for input power versus output
voltage over the 40-dB dynamic range. Measurements of the return loss,
obtained using an automatic network analyzer, show acceptable input
return loss of less than�20 dB over the entire frequency range. The
sensitivity of the detector was measured to be (1.007�0.004) mV/mW.

I. INTRODUCTION

Thermocouple-based power sensors have been one of the most
widely used tools for microwave power detection [1]–[4].1 These
sensors employ a simple principle of conversion of electric power
to thermal power, which is then indirectly measured.2 A terminating
resistor dissipates the microwave energy in the form of heat. The
measurement of the temperature differential caused by the resistive
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