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Efficient Circuit Simulation of Nonuniform by open-loop transfer functions, which eliminate reflections from
Transmission Lines the terminations and provide the simplest stable characterization.
As shown in [1], for uniform lines, open-loop characterization is
Dmitri Kuznetsov equivalent to the generalized method of characteristics.

The method uses novel rational approximation, indirect numerical

. o ) ) integration, and matrix-delay separation techniques. Because the

Abstract—This paper extends the transmission-line simulation method - 4,4 js hased on frequency-domain approximation, it is directly ap-
of [1] to nonuniform lines. The method is applicable to multiconductor . . . . .
lossy frequency-dependent transmission lines characterized by sampled plicable to lines with frequency dependence and lines characterized by
frequency-domain responses. The resulting model can be directly incor- measured frequency-domain responses. Since the method introduces
porated into a circuit simulator. The implementation includes ac, dc, and  neither additional nodes nor current variables, it does not increase the
transient analyses. The_method is reliable, accurate,_and as efficient as t_hetime required for the solution of the circuit equations. As a result, the
simple replacement of interconnects by lumped resistors. The method is . . h S
based on approximation, and its accuracy and efficiency result from the method has bee.n adopted in Severlal 'n.dusm‘til and CommerCIaI circuit
simplicity of characteristic responses. To apply the method to nonuniform  Simulators and, in numerous real-life simulation exercises, proven to
lines, two novel nonuniform line models are introduced. An open-loop be computationally robust. Extensive efficiency and accuracy data,

model completely separates forward and backward waves and results in and detailed discussion of alternative transmission-line simulation
the simplest aperiodic responses, but does not guarantee their stability. methods can be found in [1].

An open-loop distributed-reflection model explicitly includes the internal . . . .
distributed reflections, and provides the simplest stable characterization. 1€ method handles both uniform and nonuniform lines in the same

It is shown that for nonuniform lines, the generalized method of char- manner. Because of the lack of space, this paper will not repeat the
acteristics no longer separates forward and backward waves. Numerical results for uniform lines, but will focus on the differences specific for
example of a parabolically tapered frequency-dependent four-conductor onyniform lines. The differences are in the expressions foithe

line is given. parameters in the ac/dc element characteristic (1), and fandY -,

Index Terms—C€ircuit simulation, interconnect simulation, nonuniform  andj, andj, in the transient element characteristic (2). Because the
transmission lines, signal-integrity analysis, transient analysis, transmis- mathod is based on approximation, its accuracy and efficiency depend
sion lines. on complexity of characteristic responses. This paper presents two

models that separate forward and backward waves and provide the
|. INTRODUCTION simplest characterization for nonuniform lines.
This paper shows that the open-loop model does not guarantee sta-
ity of characteristic responses for nonuniform lines, and introduces
fopen-loop distributed-reflection model which produces the sim-

As the speed of digital circuits increases, the transmission-linﬁ
behavior of interconnects starts to significantly affect the signg|

integrity, and their accurate modeling becomes an essential parta

the design process. A substantial amount of study has been dev [ t stable characterization. Numerical example demonstrates that

to the transient simulation of nonuniform transmission lines in rece, ?t models are in excellent agreement with the analytical solution

years [2]-[12]. This paper extends the transmission-line simulati O?Pr multiconductor frequency-dependent parabolically tapered lines

method of [1] to nonuniform lines. [2].
The method can be directly incorporated into a circuit simulator,
and supports ac, dc, and transient analyses. For ac and dc analyses, II. NONUNIFORM LINE MODELS
the method uses thE-parameter element characteristic
{u(*) =Y (wvi(w) + Y i2(w)va(w) (1) A. Open-Loop Model
t2(w) = Yar(w)vi(w) + Yoo (w)va(w). Nonuniform lines can still be represented by the same system

r]model as uniform lines (see Fig. 4)For nonuniform lines, the

gropagation functions in the forward and backward directions are no

longer the same, and the characteristic admittances become dependent

{il(au) =Y (w)vi(w) —j,(w) @) on the position along the line as well as on the direction of wave
ir(w) = Yo (w)va(w) — jy(w). propagation.

Then, the matrix admittancds, andY» and vector current sources _ | '€ Expressions fo¥, and¥, andj, andj, in the transient

j, andj, are expressed in terms of transmission-line transfer funflement characteristic (2) are derived directly from the continuity

tions by applying the continuity conditions for the voltages anaondltlons.for the vqltages and cur.re.r?ts at the line termm.alls:
currents at the line terminals. v + b1, 81 = i51 — i1, @nd the definitions of the characteristic ad-

To obtain the discrete time-domain element characteristic (need@gténC(e_s and propfiggtlor; funCt'Oﬂs{w’f”)h: ?/f(w’ ?’)zj-(w,lw),
by the circuit simulator to perform the transient analysis), th2(«) = Wij(w)ip(w).” Because of the form of the element

transmission-line functions are approximated by rational polynomi‘éltlw"""’mter'Stlc (2), it is advantageous to use functions for current

functions and then transformed into the discrete time domafffVes: To open the feedback loop formed by the reflections from

using numerical integration. To lower the approximation order ari?e terminations, the current sourge must depend only on the

improve the accuracy, the method characterizes transmission i @gkward wave, ang, only on the forward wave. This condition

For the transient analysis, the method starts with the followi
frequency-domain element characteristic:

Manuscript received September 22, 1995; revised February 13, 1998. 2Subscripts ¥” and “b” stand for forward and backward waves, “1” and

The author is at 347 Massol Ave., Los Gatos, CA 95030 USA (e-malil2” for the near- and far-end terminals, an&™ and “I” for voltage and
vdm@iname.com). current functions, respectively.
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ﬂ T Parabolically tapered lines have the simplest analytical solutions, and

are convenient to use for testing of nonuniform line models.

As long as a nonuniform line does not have abrupt discontinuities,
the open-loop responses are simple aperiodic functions of frequency
and time (as they are for uniform lines [1]), and can be accurately
represented by a few samples and simulated using a low-order
difference approximation with only real poles.

Fig. 1. System diagram representation of a transmission line with termina-/N contrast to uniform lines, the open-loop functions for nonuni-

tions. W ; andW y/, represent the forward and backward matrix propagatioform lines, while providing the simplest possible characterization,
functions for voltage waved'v |, T'v», andl'y, I'vo stand for the near- do not represent distinct physical phenomena which would have
and far-end matrix transmission and reflection coefficients. to satisfy the energy conservation law. As a result, they can be
nonminimum-phase functiofisvith unstable time-domain responses.

The reason for this is that in nonuniform lines, the forward and
backward waves are coupled via the internal distributed reflections,

uniquely defines’,, Y, andj,, j, as follows:

{Yl(w) =Ysn(w) ©) which are not explicitly included in the open-loop model.
Yo(w) =Yi(w) For instance, for parabolically tapered lines, the far-end backward
{j1 (w) = X1 (w)ip1 (w) @) characteristic admittancEs» is a nonminimum-phase function (see
Jo(w) = Xo(w)ifa(w) Table I). Nonminimum-phase functions have to be approximated
b1 (w) = W (w)ive (w) u;ing ppsitive poles which can lead to ynacceptably Igrge trgnsient
{im(w) = Wi(w)is(w) simulation errors. However, for parabolically tapered linEs; is
S . _' the only nonminimum-phase function in the open-loop element char-
{l,m(w) =iz(w) +iga(w) acteristic, and a completely stable characterization can be obtained
ip(w) = i(w) +in(w) by premultiplying both sides of the second equation in (2) Wifh'.

WhereXl(w) = I+Yf1(u}) Zbl(;u), X (,u) = I-I—ng(w') ng(w),

andY 1, Y2, andZy2, Zy, are forward and backward characteristi®. Open-Loop Internal-Reflection Model

admlttan(_:es and l_mpedances at the near- and far-end terminals. ThTgor a nonuniform-line characterization to be stable in a general
propagation fun;tlons for. current wavek, y and W, are related case, the line model has to explicitly include the internal distributed
to the propagation functions for voltage wavéy; and Wvs,  (ofiections. The system-diagram representation of a nonuniform trans-
as follows: W;s(w) = Y po(w)Wy p(w)Z i (w) and_ Wzb(“_“') = mission line (taking into account the internal reflections) is shown in
Y1 (w)Wys(w)Zsz(w). As can be seen, for nonuniform lines, the, 5

open-loop dgv_ice model is no longer given by the generali_zed mEthogfhe near- and far-end internal-reflection coefficieRts; and Ry »

of characterl_stl_cs. However, (3) and_ (4) cove_r the generalized meth&ﬂ‘nbine the total effect of the internal distributed reflections produced
of characteristics [2]7_[4] as’a special case, in Wit =Yy, = by the forward wave on its way from the near- to far-end terminal,
Yin =Yy =Y., Wiy =Wy, andX, = X, = 2I. and by the backward wave on its way from the far- to near-end

By resolving (1)—(4),Y -parameters in the ac/dc element Chara‘i’erminal respectively

teristic (1,) can be, expressed in terfns. of thg open-loop functionsThe internal-reflection propagation functioﬁévf andWy,, and
(propagation functions and characteristic admittances) as foIIows:reﬂection coefficientsRy, and Ry are identical to the scattering

Yii(w) :[I+X1(«,u)le(w)W,b(w)(Xg(w)_I)W,f(w)]yﬂ(w) parameters with the matched (at both ends) reference system (as
are the propagation functions for uniform lines) and can be directly

—1
Yio(w)= — Xl(UJ)Pl_l(UJ)WIb(—U)Yb?(LU) measured as followsWy ; = Sa1, Wy = Sis, Ryt = S,
Yo (w) = = Xo(w)Py (@)Wip(0)Y (@) and Ry, = S.,. Table Il presents analytical formulas relating the
Yo (w) = [I+X2(w)P§‘(w)W1f(w)(X1 (w) =W (w)]Ys2(w)  open-loop internal-reflection functions to the open-loop functions.
(5) Because of their distinct physical meaning, the open-loop internal-
reflection functions have to satisfy the energy conservation law, and
where are guaranteed to be stable. The internal-reflection system model in

Fig. 2 covers the model in Fig. 1 as a special case in which no internal

reflections are present, i.R,1 = Ry = 0. By taking into account

and internal distributed reflections and eliminating reflections from the
Py(w)=1—-W,p(w)[Xi(w) = IIW s (w)[X2(w) = 1]. terminations, the open-loop internal-reflection functions provide the

. . . . simplest possible stable characterization for nonuniform lines.
The open-loop propagation functions and characteristic admittance . . . .
rom the internal-reflection system model, we can derive, in

for nonunlforrr’l lines can be obtained _from the gen_eral SOIUtIotﬁe manner similar to the derivation of (3) and (4), the following
of telegrapher's equations by asymptotically separating the terms

corresponding to the forward and backward directions of propagation4nonminimum-phase functions are transfer functions whose poles are not
Table | presents these expressions for parabolically tapered linemfined to the left half of the complex plane.

Py(w) =T = Wip(w)[Xa(w) = IIW5(w)[ X0 (w) — 1]
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TABLE |
OPEN-LOOP TRANSFER FUNCTIONS FOR PARABOLICALLY TAPERED LINES: Z(z, w) = (1 + az)?2Z(w), Y(z, w) = (1 + az) "2Y (w)
Name of Function Function for Current Waves Function for Voltage Waves !
Immittance per Y(w) = G(w)+ joC(w) Z(®) = R(w) + joL(w)
unit length
Propagation 1 1
constant K, (©) = YK, (@)Y (@) = [Y(©) Zo): K, (@) = Z@K, (02" () = [Z() Y@
Propagation dela 1 1
pag Y Ty =[Cle0) Lieo)]1 { Ty =[I(e0) C(ea)]2 !
funcion Wa(@) = Y13(0) Wy (@) Z (@) = Wy @) 7 | Wy (@)= Z0,(0) Wy (@) Yo (@)= Wy, (@) ™
1 e 1+al 1 -
“Tat -k o @)

W, (0) = Y,,(0) Wy, (0) Z,,(0) = Wy (0) e <0

W () = Z,,(0) W, (0) Y, (0) = W, (@) e ™
= (1+al)e ™!

- [I _ lKv(m)H[I 1+al K (m)] Ky(@) 1}—
a

3_‘2;;’;‘;55‘“ W, (@) = W, (@) ", W, (0)=W,(0) e W, (@) = W () €™, W, (0)= W, (@) e®™
function
ttance Y (@) = Z;1 (@)= (K@) +al) " Y@), Zo(@) = Y1(0)= (Ky(@)+al)Y " @),
Y, (0) = Z; (@) = (K (0) - aI)"Y(m), Z,,(@) = Y, {(0) = (Ky(0) - al )Y (),
w1 — -1
Y @) = Z (@) = [ (14 alK, (@) + al]_, Y, Z,,(0) = Y3 (0) = (1 + al)[(1 + al)K (0) + al [Y (w),

Z,,(®) = Y3 (0) = (1 +al)[(1 +a)K(w) - al]Y " (@)
Y,, ()= Z (®) = ———[(1 +al)K (@) - al] Y(w)

N o te: The subscripts “f”, “b”, “V”, “I”, “1” and *“2” refer to the forward and backward voltage and current waves at the near and
far-end terminals, respectively.

expressions fok’; andY,, andj, andj, in the transient element the currents

characteristic (2): 31 (@) = Hp(w)[X2(w)Y 2 (w)va(w) = §o(w)]
{Y1(w) = [X1(w) = IY c1 (w) (6) {J'z(w) (@)X (w)Yer(w)vi(w) = ji(w)]
Yo(w) = [Xo(w) — IY c2(w) o
{31 = Xutepin(c) @
Jo(w) = Xop(w)iyz(w) Hiy(w) =X 1 (@)W ()T + Ria(w0)]™' X3 (w)
{im(OJ) = ij(w)ibz(w) and
ipa(w) = Wip(w)ipi(w)

_ e _ Hip(w) =Xo(w)Wip(w)[I + R (w)] 7' X7 (w).
ipa(w) = [I — Rra(w)] "[i2(w) +ép2(w)]
ip(w) = [T — Rpi(w)]” i1 (w) +dp1(w)] This way, the terminal currents do not have to be recovered.

W X () = 141~ R (1 4 o] aneXo(o) = TS nclnsr anchf . conanceeysuhich orgnate

I+ [T — Rp2(w)][T + Rr2(w)]™'. The near- and far-end charac- propag T Th:

- ; o . _.._approximation is applied, the delays are separated via the matrix delay
teristic admittances’.; and Y., are equal to the characteristic
c]eparatlon technique, which represents the matrix transfer functions
admittances of uniform lines with the same values of distribute he following form-
parameters as those of the nonuniform line at the ends, and do no% 9
depend on the direction of propagation. The propagation functions

. . .. < _ij(u,') :ﬁlf(n,u)ﬂrfjfeij*’TImeffl
and internal reflection coefficients for current wavsr¢, W, ’

Ry, and R;, are related to the propagation functions and internal Hipy(w) :ﬁjb(w)Mjbe"’”TmeM,‘b‘

reflection coefficients for voltage waved v ;, Wy, Ry, and R R

Ryvo as f0||0WS;WIf(w) = YCQ(W)WV]C(@)ZM (w), Wip(w) = Where the delayless transfer functiols ; and H;, are found as
Yd(w)v"err(W)ZCZ(W)I Ru(w') = Ycl_(W)R\fl(w)Zul(W)’ and rool 5T,

Ri>(w) = Y2 (w)Ry2(w)Ze2(w). Equations (6) and (7) cover the Hif(w)=Hij(we

generalized method of characteristics as a special case in which Hjb(w') =H(we ;»Tn,

Yy =Yoo =Y., Wiy = Wy, Rvi = Ry = 0, and

X, = X, = 2I. The matrix propagation delayf;; and T';, are the same in the

For practical application, its is advantageous to combine (6) afatward and backward directionf’;; = T'r» = T'r, and are equal
(7) and to express them in terms of the terminal voltages insteadfof all of W, Wiy, Wirp, Wiy, Hrg, andH . Tr 5, andT 1o,
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TABLE 1

EXPRESSIONS FOR THEOPEN-LOOP INTERNAL-REFLECTION FUNCTIONS IN TERMS OF THE OPEN-LOOP FUNCTIONS

Name of Function

Function for Current Waves

Function for Voltage Waves

Propagation
function

Wi (@) = Y, (0) W (@) Z_, () = Ty, (0)W (@)
I~ T i (@)W i, (@)T 5 (@)W (@)] 7 Ty (0),

W,,,((D) = ch(m)ww(m)zcz(m) =T, (@)W, (w)
. [I =T 1 ()W (@), ()W, ((.0)]_l Tz (®)

W (©) = Z_ (@)W (@)Y, (©) = Ty, (@)W, (©)
: [I Iy (@)W, ()T, (0) Wy, ((D)]_l Tyg (W),

W (@) =Z (0) Wy, (@)Y (@) = Ty, (@)W, (0)
° [I - Iquz (w)wvr (m)rvn ((D)Ww, (m)]_l Tvzl ((1))

Internal reflection

Ry (W)=Y ,(m)R,, (m)Z:l (w)

Ry (@)=Z ,(0)R,,(0)Y ,(®)

coefficient
=Ty (0) + Ty (@)W, (0)T 5 (@)W (@) =Ty (0) + Ty p (@)W ()T (0)W y (@)
I T (@)W (@)F 1y (@)W (@)] ' Ty (@), L= Ty (@)W @)y (@)W ()] ' Ty, (@),
R, (@)= Y_,(®)Ry,(©®)Z,(®) Ry, (@) =Z_,(0)R,,(®)Y ,(©)
= Iy (0) + Ty (@)W (0)Ty, (0) W, (w) =Ty () + Ty ()W ()T 4, (0)W i, ()
I~ T (@)W ()T 1y (@)W (@)] " Ty (@) JI= Ty (@)W (0T y 1, (@)W (@)] Ty (0)
Characteristic a L 4 LI
immittance Y, (@) = 271 (0) =[Y(0, ©)Z(0, ) Z7 (0, w), Z,(0) = Y(®) =[Z(0, )Y (0, ®)]2 Y (0, ®),
Y, (@) =Z (@) =[Y(, ®)Z(, m)]i Z'(, ®) Z_,(0) =Y (0)=[Z{, 0)Y(, co)]iY" (, @)
iecicung Ty (@) =21+ Y, @) Z @], Ty @) =21+ Z, (@Y, @],
Tz (@) = [1+ Y (0)Z, (@)] [T+ Y, @Zy (@)], | Ty (@) =[1+Z, (@)Y ()] [T+ Z,, (@)Y, ()],
Ty (@) = 2[1+ Y (@)Z,,(@)], Ty(©) = 2[I+Z (@)Y, (@],
Ty (0) = [[4 Yy (@Z, (@] [T+ Yy @Zy(@)] | Typ(@) = [1+Zy (@)Y (@)] " [T+ Zyy (@)Y, ()]
Reflection iy (@) =[1+ Yo (0)Z @) [I- Y (@)Z, @)}, | Tyi(@)=[1+Zn (@)Y (@] [Z, @)Y, (@) -1},

1 (@) = [1+ Y, (@)Z, (@)] '[I- Y., (@)Z,, ()],
(@) = [1+ Y, (@)Z ()] [I- Y, (0)Z,, ()],

T 2(@) = [1+ Y 5 (0)Z,,@)] '[I- Y, (0)Z, ()]

Fyp@)= [I + Zu(m)Yn ((D)]-’ [Zu (m)Ym (w)— I],
Tyu (@) =[1+Z,,(@)Y,,@)] [Z,, @)Y (@) -1],

Ty () = [14+ Z, (@)Y, (@] [Z, (@)Y, (@) -]

549

andM ,; andM ,, are diagonal eigenvalue and constant eigenvectplicated than the open-loop functions. Consequently, they require a

matrices ofT';y andT 1, respectively.

higher order approximation and have to be approximated using both

The Y -parameters in the ac/dc model (1) are expressed in ternesml and complex poles. However, because the reflections from the

of the internal-reflection functions as follows:

Y (w) = { X1 () T+PT ()W (w)

(I+Rp(w)Wip(w)] = [NY a(w)
w) = =X 1 ()P ()W ()Y 2 (w)
You(w) = =X (w)Py (@)W ip(w)Y o (w)
w) =

Yo

Yoo {Xo () [T+P5 ()W pp(w)

(I4R (W)W ()] = T}Y o2 (w)

where

Pyi(w) =T =W (W)I + Rra ()W () + Rry(w)])

and

Po(w) =1 =W ()l + R (@)W (W) + Rpz(w)].

terminations are eliminated, the open-loop internal-reflection transfer
functions do not contain nondecaying oscillations (provided that the
nonuniform line does not contain abrupt discontinuities inside), and
still can be approximated in the full range from zero to infinity.

Distributed-reflection functions typically require 15-30-order ap-
proximation for the full frequency/time range (in contrast to the
3-10-order approximation for the open-loop functions). However, the
open-loop internal-reflection characterization is still simpler than any
other stable characterization (such%s Y-, Z-, or H-parameters)
because it is the only characterization that opens the feedback loop
formed by reflections from the terminations.

IIl. NUMERICAL RESULTS

The accuracy and reliability of the method have been tested in
numerous simulation exercises. Fig. 3 shows transient waveforms for

Because they include the distributed feedback due to the interita four-conductor parabolically tapered frequency-dependent line of
reflections, the open-loop internal-reflection functions are more coif2] simulated with the open-loop and open-loop internal-reflection
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models installed in a modified nodal approach (MNA)-based circuit
simulator. The results are in excellent agreement with the analytical

solutions in [2, p. 12, Fig. 4(a) and (b)]. Seventh-order real-pole Micromachined Thermocouple Microwave Detector

approximation was used for the open-loop model, and a 17th-order by Commercial CMOS Fabrication
complex-pole approximation was used for the open-loop internal-
reflection model. Veliko Milanovié, Michael Gaitan, and Mona E. Zaghloul

The run-time comparisons for circuits of various sizes and types
can be found in [1]. The run-time data in [1] were obtained with the
open-loop nonuniform line model. Abstract— This paper reports on the design and testing of a
thermocouple microwave detector fabricated through a commercial
CMOS foundry with an additional maskless etching procedure. The
IV. CONCLUSIONS detector measures true rms power of signals in the frequency range from

This paper presented the application of the transmission-line sigf MHz to 20 GHz, and input power range from —30 to 410 dBm. The

. . . . . device has linearity better than +0.4% for input power versus output
ulation method [1] to nonuniform lines. Two novel nonuniform IIn(%/oltage over the 40-dB dynamic range. Measurements of the return loss,

models were introduced. obtained using an automatic network analyzer, show acceptable input
The open-loop model results in the simplest aperiodic responsesirn loss of less than—20 dB over the entire frequency range. The

(similar to those for uniform lines), which can be accurately reprgensitivity of the detector was measured to be (1.002£0.004) mV/mw.
sented by a few samples and a low-order approximation with only
real poles. The model, however, does not guarantee stability of the |. INTRODUCTION

line characterlzatlo'n. . . . Thermocouple-based power sensors have been one of the most
The open-loop internal-reflection model provides the simplest

L L idely used tools for microwave power detection [1]-}4These

stable characterization, which is, however, more complex than the . - X .
o . ) .__sensors employ a simple principle of conversion of electric power

open-loop characterization and requires a higher order approxmat{gn[hermal power, which is then indirectly measufedl.terminating
with complex poles. ' :

resistor dissipates the microwave energy in the form of heat. The
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